USN

Sixth Semester B.E. Degree Examination, June/July 2013 **Data Compression**

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

- Write a note on compression techniques and how compression algorithm can be evaluated. 1 (04 Marks)
 - Calculate the entropy for a binary image.

 $P(S_w) = 15/31$, $P(S_b) = 16/31$, P(W/W) = 0.8, P(b/b) = 0.7.

(06 Marks)

- c. Determine whether the following codes are uniquely decodable:
 - ii) {0, 01, 11, 111}. Give the procedure. i) {0, 01, 110, 111};

(04 Marks)

- d. A source emits letters from an alphabet $A = \{a_1, a_2, a_3, a_4\}$ with probabilities $P(a_1) = 0.13$, $P(a_2) = 0.07$, $P(a_3) = 0.5$ and $P(a_4) = 0.3$.
 - Calculate entropy of the source.
 - Find the minimum variance Huffman code. ii)
 - Find the average length of Huffman code and its redundancy.

(06 Marks)

A sequence is encoded using the LZ77 algorithm. Given that c(a) = 1, c(b) = 2, c(r) = 3 and c(t) = 4. Decode the following sequence of triples.

 $\langle 0, 0, 3 \rangle \langle 0, 0, 1 \rangle \langle 0, 0, 4 \rangle \langle 2, 8, 2 \rangle \langle 3, 1, 2 \rangle \langle 0, 0, 3 \rangle \langle 6, 4, 4 \rangle \langle 9, 5, 4 \rangle$. Assume that the size of the window is 21 and the size of the look-ahead buffer is 10.

Given the following primed dictionary and the received sequence below, build on LZW dictionary and decode the transmitted sequence. (06 Marks)

Received sequence : 1 2 3 4 2 5 6 2 1 7 9 11 7 10 12 14

Initial dictionary

: Index - 123456Entry – TOBERN

- Give the algorithm used by CALIC to form the initial prediction and explain this algorithm.
- Explain the term distortion in Lossy coding. Discuss the different ways to measure 3. (08 Marks) distortion.
 - What is quantization? Explain the quantization problem with an example. (06 Marks) b.
 - Explain the uniform quantization with fixed length code words and show that SNR of a uniform quantizer of a uniform distributed source is 6.02 ndB. (06 Marks)
- With a neat block diagram, explain vector quantization procedure. (06 Marks)
 - Give Lloyd algorithm to generate the pdf optimized scalar quantizer assuming that the distribution is known. Show how this algorithm can be generalized to the case where a (10 Marks) training set is available.
 - Explain the drawbacks of delta modulation with a sketch.

(04 Marks)

10CS/IS663

PART - B

5 a. Explain the two properties of the linear system. (04 Marks)

b. Find the inverse Z-transform of $F(z) = \frac{2z^4 + 1}{2z^3 - 5z^2 + 4z - 1}$. (08 Marks)

c. Explain quantization and coding of transform coefficients. (08 Marks)

6 a. Explain basic subband coding algorithm with block diagram. (10 Marks)

b. Explain MPEG-2 AAC encoder with a neat block diagram.

7 a. Explain multi resolution analysis and the scaling functions. (10 Marks)

b. For the seven-level decomposition shown below:

26	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

Find the bit stream generated by the EZW coder.

(10 Marks)

(10 Marks)

8 a. Briefly explain ITU-T recommendation H.261 encoder with a block diagram. (06 Marks)

b. Briefly explain video signal representation.

(06 Marks)

c. Briefly explain motion compensation. Consider the following 4×4 image

Apply loop filter of H.261 coding algorithm.

(08 Marks)